On the similarities between the quasi-Newton least squares method and GMRes

نویسندگان

  • Rob Haelterman
  • Ben Lauwens
  • Filip Van Utterbeeck
  • Helena Bruyninckx
  • Jan A. Vierendeels
چکیده

We show how the quasi-Newton least squares method (QN-LS) relates to Krylov subspace methods in general and to GMRes in particular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Quasi-newton Methods for Nonlinear Least Squares Focusing on Curvatures

Most existing quasi-Newton methods for nonlinear least squares problems incorporate both linear and nonlinear information in the secant update. These methods exhibit good theoretical properties, but are not especially accurate in practice. The objective of this paper is to propose quasi-Newton methods that only update the nonlinearities. We show two advantages of such updates. First, fast conve...

متن کامل

Best multilinear rank approximation of tensors with quasi-Newton methods on Grassmannians

In this report we present computational methods for the best multilinear rank approximation problem. We consider algorithms build on quasi-Newton methods operating on product of Grassmann manifolds. Specifically we test and compare methods based on BFGS and L-BFGS updates in local and global coordinates with the Newton-Grassmann and alternating least squares methods. The performance of the quas...

متن کامل

A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem

Constrained least squares estimation lies at the heart of many applications in fields as diverse as statistics, psychometrics, signal processing, or even machine learning. Nonnegativity requirements on the model variables are amongst the simplest constraints that arise naturally, and the corresponding least-squares problem is called Nonnegative Least Squares or NNLS. In this paper we present a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 273  شماره 

صفحات  -

تاریخ انتشار 2015